Metal-clad type switchgear USN 170

Technical information

CONTENTS

Main characteristics	4
Service conditions	6
Technical data	6
Diagrams of main circuits	7
Low voltage compartment	9
Cable compartment	10
Draw-out element compartment	12
Busbar compartment	14
Operating elements of cubicle	15
Cubicle design and equipment	16
Installation on the ground	19
Operating accessories	20
Interlock system	21
Order blank	22

MAIN CHARACTERISTICS

- Construction of three high voltage compartments with draw-out circuit breakers
- Fully metal-clad, type tested according IEC
- Make-type earthing switch
- One-sided maitenance
- Operation of all switching devices with front door closed
- Complete air insulation of all switchboard live parts
- IP3X degree of protection on the external housing
- Constructed to withstand the overpressures caused by the internal arc up to 25 kA/1s
- Busbar segregation shutters activated automatically by circuit breaker movement inside the compartment

Г

ELGA

• Mechanical outside door interlock ensures safe maintenance

APPLICATION

USN 170 series cubicles are used in indoor switchgears and distribution centers for 24 kV voltage 50/60 Hz frequency electrical power distribution, line overload and short circuit protection. Cubicles are equipped with vacuum circuit breakers of various manufacturers.

ORDER NUMBER STRUCTURE								Tupe: USN-20SI-13/170×080 Serial-No: 8478+16 2012 Standards EE 62271-200 CT rate: 75-150/5/5/1 A VT rate: 55-10/3 0.1/3/20.1/3/20 Us-20k/ Ur-24k/ Up-125k/ Ud-50k k-25kA tk-3s lp=53kA ↓ In-1250A fr=50k2 P=3X T=+5+40 °C Made in Lithamia			
	U	S	Ν	-	xx	XX	-	xx	/	000x000	
Indoor Switchgear — Cubicle rated voltage, kV — vacuum circuit breaker / function VD – VD4 ("ABB") SI – SION ("Siemens") IS – ISM25_Shell ("Tavrida Elect GS – load break switch SS – section disconnector IT – voltage transformer SR – service transformer primary circuit diagram number: series number (170) — dimensions (depth x width), cm	al unit: ric")										

CUBICLE STRUCTURE

The torsionally rigid housings of the cubicles are made of 2.0...3.0 mm thickness galvanized steel sheets folded at the edges and bolted together.

With the selection of high quality materials, special surface treatment and powder painting, the conditions for high impact and corrosion resistance are fulfilled.

Special labyrinth construction of panel's side elements and doors ensure personnel safety against arc faults.

Switchboards can be fixed to the special foundation, using anchoring bolts above cable ducts.

PROTECTION AGAINST INTERNAL ARC

Switchboards are designed in compliance with the prescription of the IEC602271-200 standard and ensure maximum personnel safety even under internal arc conditions.

In fact, the switchboards are constructed to withstand the overpressures caused by the internal arc and are fitted with ducts to guide the exhaust gases so that there is no damage to operators or to the rooms.

On request, the UAB "ELGA" switchboards are fitted with an optical arc protection system with sensors in the various compartments.

Seismic test

Arc protection relay NOLA-03-M

Internal arc test at 25kA/1s

TYPE TESTS

Sophisticated tests are performed at accredited European power laboratories (IPH, CESI, IEL).

SERVICE CONDITIONS

Cubicles are designed for indoor use (on stationary premises or prefabricated substation buildings) and must be operating under normal conditions in accordance with the IEC 60694 standard.

The lower limit of operating ambient air temperature shall be not less - 20° C.

The upper limit of operating ambient air temperature shall not exceed + 40° C.

Cubicles can be used up to an altitude of 1000m. Beyond that (altitude up to 3000 m) it's necessary to take into account of a decrease in the dielectric strength.

There must be no dust particles, fumes or smoke, corrosive or flammable gases, vapours or salts.

Seismic resistance of cubicles is up to 7 on Richter scale and up to 9 on MSK scale (according to IEC 60068-3-3).

When commissioning and operating the switchgear under normal conditions, the general electrical safety instructions, as well as operation handling instructions should be respected.

The operational safety of the switchboard is dependent on professional installation and assembly, as well as appropriate handling and diligent servicing.

Failure to comply with the instructions contained in this operating manual can result in the guarantee becoming invalid.

TECHNICAL DATA

Rated voltage kV	20
Maximum operating voltage kV	20
Frequency Hz	50/60
Test voltage (50-60 Hz 1 min) kV	65
Impulse withstand voltage $(1.2-50 \text{ us}) \text{ kV}$	125
Rated feeder connection current A	630: 1000: 1250: 1600: 2000: 2500
Rated main bushar current A	630 2500
Circuit breaker's making current kA	16: 20: 25
Rated short-time withstand current (3 s) kA	16: 20: 25
Rated peak withstand current kA	40: 50: 63
Rated low voltage circuit connection voltage V	40, 30, 83
	48: 110: 220
	40, 110, 220
	110, 230
	VD4 - ABD ,
	SION - "Siemens",
	ISM25_Shell - "Tavrida Electric"
Insulation level	Normal insulation
Insulation type	Air
Classification according internal arc withstand	AFLR
(IEC62271-200)	25 kA/1s
Loss of service continuity category	LSC2B
(IEC62271-200)	
Partition class (IEC62271-200)	PM
Degree of protection (with the cubicle door closed)	IP4X
Busbar insulation	Insulated
Outgoing line connection	Cables
Maintenance version	One-sided
Height (with arcing channels)	2325 (2600)
Width	800mm: 630A1250A / 24kV
	1000mm: 1600A, 2000A, 2500A / 24kV
Depth	1700mm: 630A2500A / 24kV

PRIMARY CIRCUIT DIAGRAM TABLE (FOR 24 KV CUBICLES)

48	48a	49	50	50 51		53	54
Current: up to 2000 A Width: 800 and 1000 mm	Current: up to 2000 A Width: 800 and 1000 mm	Current: up to 2000 A Width: 800 and 1000 mm	Current: up to 2000 A Width: 800 and 1000 mm	Current: up to 2000 A Width: 800 and 1000 mm	Current: up to 2000 A Width: 800 and 1000 mm	Current: up to 2000 A Width: 800 and 1000 mm	Current: up to 2000 A Width: 800 and 1000 mm
55	56	57	58	59	60	61	61a
Current: up to 2500 A Width: 800 and 1000 mm	Current: up to 2500 A Width: 800 and 1000 mm	Current: up to 2500 A Width: 800 and 1000 mm	Current: up to 2500 A Width: 800 and 1000 mm	Current: up to 2500 A Width: 800 and 1000 mm	Lurrent: up to 2500 A Width: 800 and 1000 mm	HK HK Current: up to 2500 A Width: 800 and 1000 mm	Current: up to 2000 A Width: 800 and 1000 mm
62	63	64	65	66	76	77	78
+к +к		Г – - К Г – - К	J.				
Current: up to 2500 A Width: 800 and 1000 mm	Current: up to 2000 A Width: 800 and 1000 mm	Current: up to 2000 A Width: 800 and 1000 mm	Current: up to 2000 A Width: 800 and 1000 mm	Current: up to 2000 A Width: 800 and 1000 mm	Current: up to 1250 A (400 A - with fuses) Width: 800 mm	Current: up to 1250 A (400 A - with fuses) Width: 800 mm	Current: up to 1250 A (400 A - with fuses) Width: 800 mm

LOW VOLTAGE COMPARTMENT

Low voltage compartment is manufactured in double steel plate system to have low voltage instruments well protected against the effects of short circuit currents from the primary compartments. The auxiliary circuits of the circuit breaker are automatically connected by means of a specially designed multi-pole connector, which is automatically connected during circuit breaker sliding-in.

LV compartment door

The low voltage circuit connection between cubicles

The auxiliary circuits of the circuit breaker are automatically connected

Relay-protection devices

USN cubicles can be equipped with various digital protection and automation devices, electronic and multifunctional microprocessor-based energy meters. Typical diagrams realized using digital protection and automation devices, namely SEPAM, REF, SPAC, MiCOM, SIPROTEC, F 650, VAMP. Other digital devices can be utilized on request.

Diagrams of auxiliary circuits

Principal and secondary wiring diagrams for auxiliary circuits are the part of USN switchgear documentation.

Diagrams are realized with DC or AC auxiliary voltage. AC/DC panels can be offered on request.

A complete set of diagrams is available for all typical USN switchgear cubicles: incoming, outgoing, section disconnector, metering, load break switch, voltage transformer, service transformer and etc.

Diagrams of auxiliary circuits for USN switchgears are realized through a range of typical schemes using various microprocessor-based protection, control, automation and signaling devices. Diagrams of an energy metering can be realized using electronic or multifunctional microprocessor-based energy meters.

CABLE COMPARTMENT

Access to the cable compartment is from the front side. It is very easy to reach cable area, due to the compact design of busbar and circuit breaker compartments. Up to 45% of switchgear panel volume can be used as the cable termination compartment. A connection of 4 parallel cables up to 500 mm² per phase does not provide any problem, since two partitions between cable and draw-out element compartments can be removed.

USN switchboards are fitted with a fault making earthing switch mounted in the cable compartment to connect the busbar, incoming or outgoing cables to earth. The earthing switch is controlled from the front of the switchboard by means of manual or motor (on request) operation. Electromechanical interlocks can link switch operation to other switching device in the substation or to lack of voltage in the cable.

In	Width, mm	Rated short-time withstand current	Max. number of cables per phase	The height of the cable connection point from the ground, mm
630 A	800	up to 25 kA	2	700
1000 A	800	up to 25 kA	2	700
1250 A	800	up to 25 kA	3	500
1600 A	1000	up to 25 kA	3	500
2000 A	1000	up to 25 kA	4	500
2500 A	1000	up to 25 kA	4	500

Bottom of cubicle hermetically sealed with cable entry sealing inserts

Locking earthing switch mechanism

Earthing switch operation

Opening cable compartment door

Mechanical indicator of earthing switch status

Earthing switch

Electronic indicator of earthing switch status

Earthing busbar connection between cubicles (connecting up the earthing circuit)

Fixing the cables and connecting cable earthing braid

Passage of the LV cables in the cable compartment

Segregation of cable and draw-out element compartments

DRAW-OUT ELEMENT COMPARTMENT

Standardized construction of truck allows integration of voltage transformers, contactors, section disconnectors and vacuum circuit breakers from major worldwide suppliers.

SION Siemens

VD4 ABB

LBSkit Schneider Electric

ISM25_Shell Tavrida Electric

Voltage transformer on truck

Section disconnector on truck

Opening draw-out element compartment door

Operating truck

Electronic indicator of truck position

Removing partition between draw-out element and cable compartments

Operating segregation shutters

Locking shutter operating mechanism

Earthing contact of truck

Removable access panel to busbar compartment

BUSBAR COMPARTMENT

The busbar system is made of flat copper or aluminum bars connected by bolted connection. Busbars are additionally covered with insulating material.

Busbar compartment, as well as draw-out element and cable compartments, has an exhaust channel to let out overpressured hot gases in the case of a fault.

Busbar compartments between two adjacent cubicles are separated by special cast resin bushings.

Busbar with special cast resin bushings

Removable access panel to busbars in circuit breaker compartment

Busbar connection

OPERATING ELEMENTS OF CUBICLE WITH "SION" (SIEMENS) CIRCUIT BREAKER

"SION" circuit breaker is mounted on truck.

CUBICLE DESIGN AND EQUIPMENT

Indoor switchgear consists of USN cubicles with different functional units, control and protection relays, signaling and metering devices and other auxiliary equipment, which are interconnected electricaly.

Design layouts of USN switchgear cubicles are given below.

Circuit breaker cubicle USN-20SI-01

1 Internal arc pressure relief flap for cable, busbar and draw-out element compartments

Draw-out element compartment

- 2 Circuit breaker on truck
- 3 Segregation shutters
- 7 Bushing insulator

- Low voltage compartment
 - 4 Control cable passage

Busbar compartment

- 5 Busbar bushing insulators
- 6 Busbars

Cable compartment

- 8 Current transformer
- 9 Surge arrester
- 10 Earthing switch
- 11 Earthing bar (neutral)
- 12 Cable connection lugs
- 13 Cable clamping parts

1 Section disconnector on truck

Section disconnector cubicle USN-20SS-59

- 1 Voltage transformer on truck
- 2 Post insulator

Voltage transformer cubicle USN-20IT-46

Load break switch cubicle USN-20GS-76

INSTALLATION ON THE GROUND

Cubicles must be positioned on installation site in accordance with certified project and electrical diagram. There must be duct or opening for cable passing in the floor. Cubicles are fixed to the ground with anchor bolts M12.

Installation of a back-to-wall switchboard (top view)

Positioning cubicles in switchgear

Cubicles must be positioned in the order of priority in accordance with the single-line diagram.

For a switchboard composed of 1 to 10 cubicles, it is recommended to begin installation from the first to the last cubicle on the side opposite the access to the premises. For a switchboard with more than 10 units, begin the installation of the equipment by the middle of the switchboard.

Connecting cubicles

Check the perpendicularity of each of them in relation to the ground. Align up the front facing panels.

Proceed with the layout of the other cubicles by repeating the same checks each time.

Cubicles interconnected by M8 bolts in 3 fixing points (in accordance with the diagram).

OPERATING ACCESSORIES

Equipment handling table for the draw out element

2
3

- 1. Handle for locking/unlocking the draw out element from its compartment
- 2. Adjusting the table height
- 3. Area for storing the accessories (operating handles, keys)
- 4. Locking/unlocking the wheels

Operating handles and keys

Locking and unlocking key for the doors of the cubicle

The handle for circuit breaker mechanical switch on/off

The crank-handle for the draw out element control

The handles for earthing switch control

POSITION OF COMMUTATION DEVICES AND ITS OPERATION POSSIBILITY SUBJECT TO DRAW-OUT ELEMENT POSITION AND COMPARTMENT DOOR INTERLOCKS

		Draw-out element position							
		Operation	Intermediate	Isolated	Service				
ker	Operation possibility	YES	NO	YES	YES				
lit brea	Position	ON/OFF	OFF	ON/OFF	ON/OFF				
Circu	Movement possibility (possibility to put in control handle)	Movement possibility (possibility to put in control handle) NO (if circuit breaker is switched on); YES (if circuit breaker is switched off)		YES (if earthing switch is opened); NO (if earthing switch is closed)	YES				
CB compartment door	Interlock	Blocks the door from opening	Blocks the door from opening	Allows to open the door (if earthing switch is opened); Blocks the door from opening (if earthing switch is closed)	Allows to open the door				
iing switch	Possibility to put in control handle	NO	NO	YES	YES				
Earth	Position	OFF	OFF	ON/OFF	ON/OFF				
Cable compartment door	Interlock	erlock Blocks the door Blo from opening fro		Allows to open the door (if earthing switch is opened); Blocks the door from opening (if earthing switch is closed)	Allows to open the door (if earthing switch is opened); Blocks the door from opening (if earthing switch is closed)				

ORDER TABLE

1	Project name									
2	Name and address of the customer									
4	Main circuit rated voltage, kV									
5	Main busbar rated current, A									
6	Rated short-time withstand curr	ent, kA								
7	Serial number of the cubicle acc	cording to p	olan							
8	Primary circuit diagram number									
9	Cubicle type (incoming, outgoin transformer, circuit breaker, load	g, voltage t d break swi	transformer, service tch and etc.)							
10	Main circuit rated current, A (630, 1000, 1250, 1600, 2000, 2	2500)								
11	Circuit breaker (load break	type								
	switch, contactor)	rated curr	ent, A							
		breaking o	current, kA							
12	Fuse-link rated current	•								
13	Current transformers	ratio								
		quantity								
		accuracy class								
		burden, VA								
14	Voltage transformers	1st winding	burden, VA							
			accuracy class							
		2nd winding	burden, VA							
			accuracy class							
		3rd winding	burden, VA							
			accuracy class							
15	Zero sequence current transform	mer, quanti	ty							
16	Surge arresters, type									
17	Microprocessor-based	type								
	protection device	protection functions								
18	Energy meters	active								
	reactive									
19	Amperemeter									
20	0 Voltmeter									
21	1 Cubicle heating									
22	2 Motor drive for draw-out element									
23	3 Motor drive for earthing switch									
24	4 Internal arc channel for directing arc outside the building									
25	5 Tin or silver plated busbars (option)									
26	Insulated busbars									
27	Other color									
28	Two-sided maintenance									
29	Options (NOLA, KAMP)									

Annex to the order blank:

Single line diagram with specified types of protection. Automatic Load Transfer (ALT) algorithm.
Layout plan of cubicles in switchgear and dimensions of available installation place.
Other additional requirements.

title

signature

Customer:

ELGA UAB

Pramonės str.12 LT-78150 Šiauliai, Lithuania Tel.: +370 41 594710 Fax: +370 41 594725 E-mail: info@elga.lt Internet: www.elga.lt

USN-170-Tech.Inf. - Rev. 0.3 - EN - 2015.08